SHORT COMMUNICATION

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1988). C44, 948

Structure of $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{\mathbf{2}}$: corrigendum. By Richard E. Marsh,* Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
(Received 17 December 1987; accepted 5 February 1988)

Abstract

The structure of this compound [Olszak, Stępien, Wajsman, Grabowski, Glinka \& Lecocq (1987). Acta Cryst. C43, 2169-2171], which contains a 13-membered heterocyclic ring, was described as triclinic, space group $P \overline{1}$, with $a=12.756$ (3) $, \quad b=9.950(3), \quad c=13.566$ (3) $\AA, \quad \alpha=$ 90.49 (1), $\beta=118.04$ (1), $\gamma=90.04$ (1) ${ }^{\circ}, Z=2$. It should be described as monoclinic, space group $C 2 / c$, with a^{\prime} $=23.947$ (6), $\quad b^{\prime}=12.756(3), \quad c^{\prime}=9.950(3) \AA, \quad \beta^{\prime}=$ $90.57(3)^{\circ}, Z=4$. The $C 2 / c$ coordinates are given. The molecule lies on an exact, rather than an approximate, twofold axis.

The vectors describing the new cell are [102], [100] and [010]. The corresponding coordinate transformations are: $x^{\prime}=z / 2+0.25, \quad y^{\prime}=x-z / 2-0.25, \quad z^{\prime}=y$; the translations are needed to place the origin at the conventional center of symmetry in $C 2 / c$. After averaging the transformed coordinates over appropriate pairs of atoms, the $C 2 / c$ coordinates in Table 1 result.

The shifts in the original $P \overline{1}$ coordinates (Olszak et al., 1987, Table 1) necessary to achieve the symmetry of $C 2 / c$ are slightly larger than usual: the maximum shift is $0.014 \AA$ and the r.m.s. value of 'shift/ σ ' is 1.25 compared with the expectation value of $1 \cdot 0$. I suspect that this discrepancy is due to the original authors' failure to achieve the usual degree of convergence in their least-squares refinement; Olszak et al. (1987) quote a 'max. shift/e.s.d.' ratio of 0.996 . * Contribution No. 7715. Work supported in part by the National Institutes of Health (grant GMS 16966).

0108-2701/88/050948-01\$03.00

Table 1. Coordinates $\left(\times 10^{4}\right)$, space group $C 2 / c$
The atoms are numbered according to Table 1 of Olszak et al. (1987); the numbering in their Fig. 1 differs in some instances.

	x	y	z
$\mathrm{O}(8)$	0.5000	0.0976	0.2500
$\mathrm{~S}(1,2)$	0.6523	0.3639	0.2306
$\mathrm{~N}(1,6)$	0.5952	0.3676	0.3206
$\mathrm{O}(1,4)$	0.6411	0.4260	0.1144
$\mathrm{O}(2,3)$	0.6662	0.2562	0.2182
$\mathrm{C}(2,5)$	0.5712	0.4720	0.3465
$\mathrm{C}(3,4)$	0.5080	0.4718	0.3244
$\mathrm{C}(9,7)$	0.5494	0.1604	0.2532
$\mathrm{C}(11,21)$	0.7053	0.4276	0.3240
$\mathrm{C}(12,22)$	0.7398	0.3688	0.4065
$\mathrm{C}(13,23)$	0.7796	0.4190	0.4847
$\mathrm{C}(14,24)$	0.7856	0.5249	0.4820
$\mathrm{C}(15,25)$	0.7517	0.5826	0.3968
$\mathrm{C}(16,26)$	0.7118	0.5332	0.3174
$\mathrm{C}(141,241)$	0.8278	0.5794	0.5715
$\mathrm{C}(31,41)$	0.5883	0.2898	0.4251
$\mathrm{C}(32,46)$	0.6036	0.3154	0.5571
$\mathrm{C}(33,45)$	0.5938	0.2448	0.6594
$\mathrm{C}(34,44)$	0.5693	0.1502	0.6322
$\mathrm{C}(35,43)$	0.5554	0.1247	0.5013
$\mathrm{C}(36,42)$	0.5643	0.1938	0.3949

The molecule lies on a crystallographically exact, rather than an approximate, twofold axis. Other details of the reported structure are little changed.

References

Olszak, T. A., Stȩpień, A., Wajsman, E., Grabowski, M. J., Glinka, R. \& Lecoce, D. (1987). Acta Cryst. C43, 2169-2171.
© 1988 International Union of Crystallography

